Función Booleana
Una función booleana es una aplicación de A x A x A x....A en A, siendo A un conjunto cuyos elementos son 0 y 1 y tiene estructura de álgebra de Boole.
Supongamos que cuatro amigos deciden ir al cine si lo quiere la mayoría. Cada uno puede votar si o no. Representemos el voto de cada uno por xi. La función devolverá sí (1) cuando el numero de votos afirmativos sea 3 y en caso contrario devolverá 0.
Si x1 vota 1, x2 vota 0, x3 vota 0 y x4 vota 1 la función booleana devolverá 0.
Producto mínimo (es el número posible de casos) es un producto en el que aparecen todas las variables o sus negaciones.
El número posible de casos es 2n.
Siguiendo con el ejemplo anterior. Asignamos las letras A, B, C y D a los amigos. Los posibles casos son:
Votos Resultado
ABCD
1111 1
1110 1
1101 1
1100 0
1011 1
1010 0
1001 0
1000 0
0111 1
0110 0
0101 0
0100 0
0011 0
0010 0
0001 0
0000 0
Las funciones booleanas se pueden representar como la suma de productosmínimos (minterms) iguales a 1.
En nuestro ejemplo la función booleana será:
f(A,B,C,D) = ABCD + ABCD' + ABC'D + AB'CD + A'BCD
Diagramas De Karnaugh
Los diagramas de Karnaugh se utilizan para simplificar las funciones booleanas.
Se construye una tabla con las variables y sus valores posibles y se agrupan los 1 adyacentes, siempre que el número de 1 sea potencia de 2.
En esta página tienes un programa para minimización de funciones booleanas mediante mapas de Karnaugh
No hay comentarios:
Publicar un comentario